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Recent advancements in the field of physics-informed neural networks (PINNs) hold great 
potential for solving the tribology-related problems, and areas for their applications are 
systematically reviewed in this article. The tribological applications are viewed as funda-
mentally dependent on the variety of multiphysics phenomena, which must be taken into 
account when developing PINNs. Materials data, topology and surface roughness, and 
analytical tribometry data can be used as multiphysics input for the PINNs specialized in 
solving friction, lubrication, wear, wetting, heat transfer, structural and phase transitions, 
chemical reactions, cracking, and fretting problems. Creating multi-PINNs that synthesize 
the individual tribology phenomena into the complex multiagent approach is viewed as a 
practically important and challenging issue that is yet to be addressed.
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1. INTRODUCTION

Tribology is one of the most important and at the same 
time very complex part of materials science [1,2]. Natu-
ral phenomena (such as earthquakes), biological systems 
(such as joints), mechanical and anthropogenic devices—
all are based on processes that take place in various types 
of contact (tribological) systems. The problem of creating 
materials with specified tribological properties is direct-
ly linked to important applications in various industries 
but is still far from being solved. High friction can lead to 
wear and reduction of products service life in mechanical 
engineering, which has great economic and environmental 
impact. It was estimated that more than half of the fuel 
consumed by cars and other vehicles is wasted on over-
coming friction in moving joints.

The problem of friction control is very complex from 
a scientific point of view due to the variety of physics 
phenomena accompanying friction processes, which may 
include the presence of contaminants, the presence of liq-

uids and capillary phenomena, surface defects, etc. Tri-
bology as a scientific discipline is difficult to generalize. 
This is due, in particular, to the fact that the state of real 
surfaces during contact is difficult to determine due to sur-
face roughness and contamination, which greatly affect 
contact phenomena [3]. Even a theoretically formally de-
fined surface contains an incredible number of degrees of 
freedom, which can hardly be calculated by direct meth-
ods [4]. Therefore, numerous phenomenological models 
of contact mechanics, in particular, friction models, usu-
ally choose one predominant friction mechanism and ne-
glect others. Knowledge about small tribological systems 
and friction on the nanoscale, forming the discipline of 
nanotribology, can be also helpful in understanding tribol-
ogy at the macroscale [5,6]. 

All tribological phenomena are governed by atomis-
tic interaction inside the contacting solids, between them, 
and in the liquid or solid substances present at the inter-
face. Those interactions manifest themselves via various 
physical phenomena, that can be described by respective 
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theories and models. Thus, the tribological interface can 
be viewed as multiphysics system, containing multiple 
coupled fields (see Fig. 1), involving mechanical, thermo-
dynamic, electro-magnetic, chemical, quantum, and other 
types of phenomena [3].

Analytical models in tribology commonly make use of 
simplifications that exclude certain physical phenomena, 
and, thus, are prone to inaccuracies. Tribological experi-
ments can be expensive and time-consuming. Physics-in-
formed machine learning is a technique that can improve 
traditional models, increase their accuracy and robustness 
for applications in friction, wear prediction and lubrica-
tion by integrating data with mathematically formulated 
physics models [7–9]. Combining the classical data-driv-
en approach with physics equations into neural networks, 
so-called physics-informed neural networks (PINNs) can 
be realized. The underlying equations of physics laws can 
be incorporated in PINN through residual terms. PINN is 
meshless—one of the main advantages of using PINNs 
over finite element method (FEM). In the following sec-
tions of the paper, recent progress in PINNs development 
in several most common tribology-related fields, including 
lubrication, friction, wear, heat transfer, chemical reac-
tions, wetting, phase transitions, cracking, and fretting is 
considered.

2. SPECIALIZED TRIBOLOGY-ASSOCIATED 
PINNs

2.1. Lubrication

Lubrication critically enhances the reliability and durabil-
ity of mechanical systems by minimizing friction, wear, 
and thermal degradation at contact surfaces. Effective lu-

brication reduces direct metal-to-metal contact, dissipates 
heat generated during operation, and prevents material 
loss or deformation. By maintaining optimal interfacial 
conditions and preventing corrosion or adhesive failure, 
lubrication directly governs the operational longevity 
and maintenance intervals of mechanical systems [10]. 
In lubricated tribological contact elastohydrodynamic 
lubrication (EHL) numerical simulations commonly rely 
on the Reynolds equation to compute contact surface de-
formation and pressure distribution. In the recent publica-
tion [11], the potential capability of PINNs in addressing 
EHL via Reynolds equation under conditions of sliding 
and squeezing in contact (Fig. 2), and transient cavitation 
had been revealed. In the lubrication problems for finding 
the pressure distribution of thin viscous fluid films PINNs 
commonly include the loss function as shown in Fig. 2.
In the paper [12] a hybrid method for prediction of 
lubrication phenomena with classical graph neural 
networks as well as PINNs was employed, which allowed 
to demonstrate improved accuracy with the described 
method. The decision tree algorithm was used for 
classification problem that defines the lubrication success 
or lubrication failure. The neural network can predict 
the lubrication thickness as feeding input to the physics-
informed network, which in its turn can predict pressure 
and thickness distribution of the lubricant film.

Rom [13] demonstrated on the example of a journal 
bearing, that the PINN solves several problems simulta-
neously and generalizes the replicable solution by extend-
ing its inputs such as the relative eccentricity of a bearing. 
Accurate pressure and liquid ratio predictions for further 
values of the relative eccentricity are then obtained by just 
evaluating the PINN taking less than a second. The mod-
el allows to consider cavitation phenomena by modifying 

Fig. 1. Scheme representing a variety of physical phenomena in a tribological system illustrated by two different solid materials with 
surface roughness brought into mechanical contact. The tribological system is exposed to various loads: mechanical, thermal, electric, 
and environmental. Adapted from Ref. [3].
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the Reynolds equation by introducing the liquid fraction 
function ( , )x yθ . Results have confirmed that the devia-
tions of the PINN solutions from the reference solutions 
are quite small (0.6%, 0.7% and 1.6%). Furthermore, a 
maximum relative error of 1.6% is clearly acceptable giv-
en the computation time is reduced to less than a second 
when evaluating the trained neural network.

In the paper [14] PINN was applied to solve an initial 
value problem described by a first order ordinary differen-
tial equation (ODE) and to solve the Reynolds boundary 
value problem, described by a second order ODE. Both 
these problems were selected since they can be solved an-
alytically, and the error analysis showed that the predic-
tions returned by the PINN were in good agreement with 
the analytical solutions for the given specifications.

In the paper by Zhou et al. [15] an alternative approach 
to PINN model by augmented Lagrangian method (ALM) 
is demonstrated. This approach includes incorporating 
penalty terms and simulating Lagrange multipliers and re-
defining the boundary value problem as an unconstrained 
optimization problem, solved by minimizing the Lagrang-
ian function. ALM adaptively adjusts the weights of each 
constraint according to each collocation point error, there-
by steering the solution toward accuracy. ALM-PINNs 
loss function can be formulated as follows:

( ) ( )
1

1 ,
M

k k k
f f b b j j j j j

j
l l l x y b x y

Mλ
=

= ω +ω + λ∑ ω  (1)

where ωf and ωb represent the fixed penalty coefficients 
of the partial differential equation (PDE) residuals f and 
boundary errors b in the loss function, respectively, lf is the 
residuals of the Reynolds equation and lb is the errors of 
boundary conditions, M is the number of collocation points 
on the boundary located at the dimensionless coordinates 

jx  and jy , the third term on the right of the equation is the 
Lagrangian term, and k

jλ  represents the Lagrange multipli-
er, ωk is the weight of the k-th hidden layer. ALM-PINNs 

significantly improved boundary accuracy compared to 
other types of PINNs, adaptively balancing the weights 
of loss during training. The maximum boundary error was 
reduced by approximately 80%.

2.2. Friction

Friction critically influences the reliability and durability 
of mechanical systems by governing wear rates, heat gen-
eration, and energy dissipation at contact interfaces. Ex-
cessive friction accelerates material degradation through 
adhesive, abrasive, or fatigue mechanisms, particularly in 
components like bearings and mining machinery operat-
ing in aggressive environments [16]. However, controlled 
friction remains essential for functionality in systems 
such as clutches or braking mechanisms, and is neces-
sary to predict, control, and apply. The paper by Olejnik 
et al. [17] revisits the static and dynamic friction models, 
including Coulomb, Coulomb-viscous, Stribeck, Dahl, 
LuGre and generalized Maxwell-slip models and demon-
strates application of PINNs to the problem planar friction 
of a double torsion pendulum system. It was shown that 
the model computational effort is moderate and it exhibit-
ed high accuracy in predicting the angular rotation of the 
disk pendulum (Fig. 3).

In the study [18] a PINN model incorporating basic 
heat transfer PDE and various types of boundary condi-
tions into neural networks, is proposed to solve forward 
and inverse problems of frictional contact temperature. 
The loss function was derived from the equation of ther-
mal conductivity with boundary conditions, supported by 
experimental or FEM-generated data (Fig. 4).

The inverse problem was defined as restoring of heat 
partitioning coefficient (HPC) and convective heat trans-
fer coefficient (CHTC) from a limited set of temperature 
data. The authors stated that the PINN demonstrates the 
capability to predict accurately the frictional contact tem-

Fig. 2. Schematic illustration of a hydrodynamic lubrication PINN framework. Reprinted from Ref. [11], © 2024 by Faras Bru-
mand-Poor et al. Available under the terms of the CC BY 4.0 license.

https://creativecommons.org/licenses/by/4.0/


A.Yu. Kokhanovskiy et al.: Progress and perspectives of physics-informed neural networks for tribological... 91

Reviews on Advanced Materials and Technologies, 2025, vol. 7, no. 2, pp. 88–104

perature field by incorporating just a single actual temper-
ature data point during training. When an input thermal 
parameter, such as HPC or CHTC, is unknown, the PINN 
demonstrates the capability to accurately predict the fric-
tional contact temperature field by incorporating just a 
single actual temperature data point during training, with 
a mean relative error (MRE) of about 0.01–0.001%, and 
simultaneously, HPC and CHTC can be precisely iden-
tified by the optimization process of the PINN, with the 
relative error of about 0.01–0.1%. Experimental analysis 
revealed that the sampling positions of actual data play a 
significant role in influencing the predictive performance 
of the PINN. Incorporating actual data, which are strongly 
influenced by boundary conditions, into the training pro-
cess can enhance the effectiveness of the PINN for solv-

ing inverse problems. Finally, the study investigated the 
inverse thermal problem with multiple unknown input 
thermal parameters. The experimental results indicate that 
the PINN is successful at resolving cases involving two 
unknown CHTCs; the relative error of CHTCs is about 
1–3%. Incorporating a limited actual temperature data into 
the PINN can substantially enhance the accuracy of the 
frictional contact temperature field when all input thermal 
parameters are unknown, and the MRE of the temperature 
field decreases from 5.16% to 0.79%.

2.3. Wear

Physics-informed machine learning has become a power-
ful approach to improve the prediction accuracy of wear 

Fig. 3. Results of prediction of the frictional torque characteristics with the use of two identification models: PINN and model by 
Nelder-Mead algorithm (N-M). Reprinted from Ref. [17], © 2023 P. Olejnik and S. Ayankoso. Available under the terms of the CC BY 
4.0 license.

https://creativecommons.org/licenses/by/4.0/
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rates in manufacturing processes by integrating physical 
laws with data-driven models. Jakubowski et al. [19] have 
used a physics-informed autoencoder in a semi-super-
vised manner to learn the degradation process of work 
rolls in the cold-rolling process and have shown that 
such an architecture is capable of distinguishing between 
low- and high-wear observations. Later, Zhu et al. [20] 
considered the use of PINN in the problem of high-
speed milling using bidirectional long short-term mem-
ory network (LSTM) and fully connected neural net-
works (Fig. 5). The phenomenological models of partial 
wear extended Taylor’s equation were used as physical 
models [21]. Ultimately, the model predicted tool wear 

depending on the operating time. The authors compared 
the performance of different algorithms and found that 
the attention-based dual-scale hierarchical LSTM model 
in combination with a PINN and the extended Taylor’s 
equation model provided the most accurate results, de-
creasing prediction errors by 42%.

2.4. Heat and mass transfer

Heat transfer plays a crucial role in determining the re-
liability and durability of mechanical systems subject to 
abrasive wear. Efficient heat dissipation is essential for 
maintaining optimal operating temperatures, which helps 

Fig. 4. Simulation of frictional contact temperature based on the PINN. Reprinted from Ref. [18], © 2024 by Y. Xia and Y. Meng. 
Available under the terms of the CC BY 4.0 license.

Fig. 5. The tool wear monitoring framework based on physics-informed machine learning (RUL means remaining useful life). This 
figure is a sketch of Fig. 1 from Ref. [20]; all major designations are saved.

https://www.zotero.org/google-docs/?ZmNlNk
https://www.zotero.org/google-docs/?etN1eq
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prevent overheating that can lead to material degrada-
tion and mechanical failure. In systems like automotive 
brake discs, heat transfer is vital for dissipating the ther-
mal energy generated during braking, ensuring consistent 
performance and longevity [22]. Similarly, in electronic 
devices, advanced cooling techniques such as microchan-
nel and pin-fin structures enhance heat transfer, reducing 
thermal stress and improving device reliability [23]. Poor 
heat management can lead to increased wear and reduced 
lifespan of components, highlighting the importance of 
modeling the effective thermal management. 

PINNs have shown great potential to predict tempera-
ture and velocity fields for the heat management tasks 
without relying on extensive simulation data or mesh gen-
eration [24]. PINNs have been applied to various scenari-
os, including forced and mixed convection with unknown 
thermal boundary conditions, and the Stefan problem for 
two-phase flow [25]. Solutions of this problem are based 
on the incompressible Navier–Stokes equations and the 
corresponding temperature equation:

( )
P

2

e

1 ,
t N

∂Θ
+ ⋅∇ Θ = ∇

∂
Θu

( ) 2
Ri

Re

1 ,p N
t N

∂
+ ⋅∇ = −∇ + ∇ + Θ

∂
u u u u

0,∇⋅ =u  (2)

where Θ, ( , )Tu v=u , and p are the dimensionless tem-
perature, velocity, and pressure fields, respectively. NPe, 
NRe, and NRi denote the Peclet, Reynolds, and Richardson 

numbers, respectively. To consider heat transfer in a two-
phase system, equations were set for the latent tempera-
ture distributions within each of the two phases, 1( , )u x t  
and 2 ( , )u x t , respectively, that satisfy a heat equation
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2

2 , 1, 2,, ,a a
a a
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∂
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where k1, k2 are thermal diffusivity parameters. PINN struc-
ture for solving the two-phase Stefan problem is shown in 
the Fig. 6. Inspired by PINN, an auto encoder and image 
gradient-based approach has also been proposed by the 
Central ML Team at Ansys team for solving 2D and 3D 
chip thermal analysis [26]. The proposed network shows 
acceptable agreement with numerical simulation with 
mean absolute percentage error of 0.4%.

Furthermore, Laubscher et al. [27] have shown the ap-
plicability of PINN modeling methodologies to solve sim-
ple multi-species flow and heat transfer on a 2D rectan-
gular domain. To solve the laminar steady-state transport 
of mass, momentum, species, and energy throughout the 
domain requires the simultaneous solution of the follow-
ing PDEs:
• mass transport

0,∇⋅ =u  (4)

where ( , )u v=u , u and v are the inlet X- and Y-velocities, 
respectively;
• momentum transport

( ) ( ) ,u pρ∇ ⋅ = µ∇ ⋅ ∇ −∇uu  (5)

Fig. 6. Two-phase Stefan problem: PINN architecture for inferring the latent temperature fields 1( , )u x t  and 2 ( , )u x t , and phase-tran-
sition interface s(t), from scattered noisy observations of temperature. Adapted from Ref. [25].
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where ρ is the density, μ is the viscosity of the fluid mix-
ture and p is the outlet pressure;
• species transport

( ) ( ) ,i m iY D Y pρ∇ ⋅ = ρ ∇ ⋅ ∇ −∇u  (6)

where Yi is the species mass fraction of the gas component 
i = O2, N2, H2O and Dm is the mixture molecular diffusion 
coefficient;
• energy transport

( ) ( )
3

,
1

,P m m i i
i

c T T D h Y
=

 
ρ∇ ⋅ = ∇ ⋅ λ∇ −ρ ∇ ⋅ ∇ 

 
∑u  (7)

where cP,m is specific heat capacity of the gas mixture, 
T is the temperature and λ is the thermal conductivity 
coefficient, hi is the enthalpy of the corresponding species.
Two PINN models (PINN-1 and PINN-3) were devel-
oped and compared in the test conditions of simulating the 
propagation of water vapor into dry air flowing in a duct. 
PINN-1 used a single network to predict the mass, mo-
mentum, species, and energy equation quantities, whereas 
PINN-3 used a PINN for each set of physics PDEs being 
solved (one for mass and momentum PDEs, one for all the 
species PDEs, and one for the energy PDEs). The results 
of two PINN models were compared to simulation data 
taken from a traditional computational fluid dynamic sim-
ulation model prepared in an open-source fluid flow sim-
ulation library OpenFOAM (Fig. 7). The results showed 
that for nearly all cases the PINN-3 approach yielded low-
er loss values compared to the resultant PINN-1 losses. 
On average, for all the models trained, the PINN-3 losses 
were 62% lower compared the PINN-1 values. The results 
showed that the single network approach could adequately 
resolve the momentum and energy PDEs, but struggled to 
enforce the species mass transport requirements, whereas 
the PINN-3 approach successfully resolved the physics 
PDEs.

PINNs have also been used to solve inverse heat 
transfer problems, estimating unknown material proper-
ties and boundary conditions from limited experimental 
data [28]. PINNs have demonstrated robustness in han-
dling noisy data and partially missing physics, making 

them suitable for realistic industrial applications [25,28]. 
Furthermore, physics-informed activation functions ena-
ble accurate predictions beyond the training zone, out-
performing theory-agnostic machine learning methods 
in heat transfer applications [29]. Interestingly enough, 
PINN applications for heat and mass transfer analy-
sis might be further expanded into the chemistry do-
main [30], including reaction kinetics modeling (e.g., 
predictions of reaction networks, kinetic parameters, and 
species production) and reaction condition optimization 
(see the next Section).

2.5. Chemical reactions

Chemical reactions can lead to corrosion, oxidation, or 
other forms of material degradation, which affect the 
structural integrity and performance of mechanical com-
ponents. Understanding the kinetics of these reactions 
helps in predicting how quickly materials will degrade un-
der specific conditions, allowing for the design of protec-
tive coatings or treatments to mitigate wear. Additionally, 
chemical reactions can be involved in lubrication process-
es, where the kinetics of reactions between lubricants and 
surfaces can impact friction and wear rates, thereby affect-
ing system reliability and longevity.

Gusmão et al. [31] have applied the modified PINNs 
as a surrogate approximator for the solution of microki-
netic models (MKMs) under the mean-field approxima-
tion [32], calling this approach kinetics-informed neural 
networks. If c represents an array of concentrations or 
concentration-related state variables like partial pressures, 
concentrations and coverage fractions, for species that 
are unbound (like gases) or bound (adsorbed molecules 
or radicals), at time t, then their rates of change, ċ, or the 
MKM, is written as

( ) ( ) ( )( )Mr , M ,c c k f c= θ = θ   (8)

where M n m×∈  is the corresponding stoichiometry matrix 
and ( ) : n mf +⋅ →   maps the concentrations  
to the concentration-based terms of power-law kinetics, 

Fig. 7. Velocity (a, b), temperature (c) and species mass fraction (d, e) predictions. Adapted from Ref. [27].

https://www.zotero.org/google-docs/?GxlhpI
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and  is the temperature- and bind-
ing-energy-dependent Arrhenius-like rate constant term.

This approach provides an immediate understanding of 
the extent or depth of dissociation between the observable 
or measurable states and the underlying intermediates, and 
hence the complexity of attempting mechanism elucida-
tion. The suitability of neural networks as basis functions 
for the solution of ODEs is demonstrated by their ability 
to solve kinetic forward problems.

Furthermore, Kircher et al. [33] have developed an 
approach embedding stoichiometric and thermodynam-

ic information for learning global reaction kinetics, thus 
proposing a new global reaction neural network (GRNN) 
architecture (Fig. 8.).

To enable learning kinetics directly from reactor data, 
the new neural network is combined with a reactor model 
and trained using a neural ODE approach. The obtained 
model could reproduce the molar flow and temperature 
profiles in 900 further reactor simulations used as test 
data with a mean error of less than 0.05%. Furthermore, 
the ground truth source terms were recovered with a mean 
error of 4.3% (Fig. 9). This approach may still be in the de-

Fig. 8. Global reaction neural network architecture with embedded stoichiometry and thermodynamics. The architecture maps the cat-
alyst temperature T and reactant partial pressures p to the steady state gas phase source terms s. Key features of the architecture are the 
neural network that outputs the logarithmic forward global rates ln( )r G→ , an exponential mapping to the forward global rates r G→ , 
calculation of thermodynamically consistent global rates rG using the equilibrium constant K and the calculation of stoichiometrically 
consistent gas species source terms by the stoichiometry v. Embedded physical knowledge is highlighted in blue, latent variables of 
interest are highlighted in red and latent variables of the hidden layers are highlighted in green. Reprinted from Ref. [33], © 2024 T. 
Kircher, F.A. Döppel, M. Votsmeier. Available under the terms of the CC BY 4.0 license.

Fig. 9. Parity plots of ground truth chemical source terms on the test dataset and source terms predicted by (a) GRNN model and (b) con-
ventional neural network with similar number of model parameters. The GRNN has 1003 parameters using a hidden layer with 100 nodes 
and the conventional neural network has 1001 parameters using a hidden layer with 83 nodes. The models are trained on data from the 
same 20 reactor measurements by a fixed step Runge–Kutta fourth order ODE solver. Reprinted from Ref. [33], © 2024 T. Kircher, F.A. 
Döppel, M. Votsmeier. Available under the terms of the CC BY 4.0 license.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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velopment stage, but the ability to study true kinetics opens 
the door to applying the trained model to different reactor 
geometries and new applications in tribometry problems.

2.6. Wetting

Considering the broader aspect of surface interactions and 
lubrication, which can involve lipophilic or hydrophobic 
properties, the wetting characteristics strongly influence 
the reliability and durability of mechanical systems. In 
systems where lubricants are used, the interaction between 
the lubricant and the surface can affect friction and wear. 
For instance, lipophilic surfaces might interact differently 
with lubricants, potentially impacting the effectiveness of 
lubrication and thus the wear rate. Considering a wetting 
problem, Pan et al. [34] have proposed a network archi-
tecture for solving the Young–Laplace (Y–L) equation in 
the tube domain. Based on the given small amount of data 
with some noise and in combination with the Y–L equa-
tion and Young’s equation, the Y–L PINN method can 
successfully identify the shape of the meniscus, dimen-
sionless Bond number and contact angle θ. Fig. 10 shows 
the results of the predicted solutions of Y–L PINN for me-
niscus in the capillary (Fig. 10a). Neither Jurin’s law nor 
the modified Jurin’s law can effectively describe the true 
height of the liquid surface in large-diameter tubes. How-
ever, the results obtained using the Y–L PINN method are 
consistent with the numerical results and the calculations 
from other works (Fig. 10b). The maximum relative er-
ror in the Y–L PINN identification of the meniscus profile 
with a data quantity of 5 and under 1% noise does not 
exceed 1.3×10–2% (Figs. 10c–e).

Simultaneously, Kiyani et al [35] have taken a differ-
ent approach based on multiphase many-body dissipative 
particle dynamics simulations to study the wetting dynam-
ics of highly viscous molten sand droplets. Considering 
the material to be a liquid mixture of calcium, magnesia, 
alumina and silicate (CMAS), they have used the PINN 
framework to identify the parameters of ODEs for the 
droplets spreading radius behavior (Fig. 11). Considering 
α to be the main parameter, regulating the dynamics of 
droplet radius through time ~r tα, sigmoid-type depen-
dence α was taken into consideration

( ) ( )( )0
d ln 1, , 1 ,
d ln 1 exp lneq

r t R
t t

 
 = α θ = η −
+ β τ −  

 (9)

where r is the radius of the wetted area, t is time, R0 is the 
initial droplet radius, θeq is the equilibrium contact angle, 
unknown parameters η, β and τ were derived with PINN.
Subsequently, the closed-form dependency of parameter 
values found by the PINN on the initial radii and contact 
angles are given using symbolic regression, and then 
Bayesian PINNs were employed to assess and quantify 

the uncertainty associated with the discovered parameters. 
The close alignment between the discovered parameters 
in both models demonstrates the robustness and reliability 
of these models. It highlights their ability to capture 
effectively the underlying dynamics and characteristics 
of the spreading behaviour of CMAS, leading to accurate 
parameter estimation. The relationships uncovered 
and methods developed in this study have broader 
applications in understanding the spreading dynamics 
of droplets in general. By leveraging the insights gained 
from this research, one can investigate and understand 
the behaviour of droplets in diverse contexts, furthering 
our understanding of droplet spreading phenomena. 
Potentially, this knowledge can be used in developing 
strategies for effective droplet management and optimizing 
processes involving droplets in a wide range of practical 
applications, including those related to the tribometry 
problems.

2.7. Phase transitions

PINNs have emerged as a powerful tool for modeling 
complex material behaviors and structural transforma-
tions. They have been successfully applied to microstruc-
ture-sensitive modeling and inverse design problems in 
materials science, predicting texture evolution and cal-
ibrating crystal plasticity parameters [36–38]. PINNs 
have shown the ability to effectively solve the specific 
PDEs, dealing with heat propagation in a liquid-solid 
phase change system (Stefan problem) [39]. The prima-
ry benefit lies in PINNs’ capacity to simulate dynamic 
structural evolution, such as shear-induced layering and 
grain size reduction, which govern wear resistance and 
mechanical stability. By incorporating dislocation reac-
tion kinetics and stress-dependent phase transitions, these 
models unravel mechanisms like tribologically driven 
amorphization or subsurface recrystallization observed in 
alloys under cyclic loading. Their mesh-free framework 
efficiently handles 3D contact geometries and time-vary-
ing loads, enabling predictive insights into how localized 
stress fields initiate dislocation patterning or interfacial 
phase transformations [40]. This approach supports tai-
lored material design by linking microstructural out-
comes to loading parameters without relying on idealized 
boundary conditions. Wight and Zhao [41] have shown 
that PINN inaccuracies while solving the Allen-Cahn and 
the Cahn-Hilliard equations can be avoided by several 
approximating strategies. Improved PINNs are shown to 
be used to solve the phase field equations of increased 
complexity. Ning et al. [42] have established an improved 
PINN model based on a peridynamic approach (PD-INN) 
to characterize displacements in elastic plates. The four 
considered cases showed that the proposed PD-INN can 
generally predict the displacement distribution in homo-
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geneous and heterogeneous plates. However, challenges 
associated with network training and prediction accuracy 
remain. That main challenge is the programming difficulty 
of the PD-INN, limiting its practicability. More important-

ly, the convergence speed of the network and the number 
of sampling points is said to be further increased to im-
prove the characterization accuracy in complex heteroge-
neous plates. The PD-INN can theoretically approximate 

Fig. 10. (a) Schematic of the capillary rise. A liquid column of height H in a capillary with diameter d and contact angle θ. (b) The vari-
ation pattern of the meniscus height H with the tube diameter d. The stars represent the Y–L PINN models obtained from training with 
tube diameters of 5, 10, and 15 mm. (c–e) Under 1% noise and a data quantity of 5, the comparison between the predicted solutions of 
Y–L PINN and the true meniscus profile u is presented for different tube diameters. (c) The true solutions of the Young–Laplace equa-
tion for the three tube diameters. (d) The computed results of Y–L PINN for the corresponding tube diameters. (e) The relative error of 
Y–L PINN. The positions of the data points are represented by dots, while the color indicates the height values. Adapted from Ref. [34].
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a crack propagation problem (see the next Section) with 
numerous time-consuming iterations, requiring hundreds 
of thousands of epochs for network convergence.

2.8. Cracking and fretting

PINNs have shown ability to model complex phenome-
na like cracking and fretting during contact load. PINNs 
have been applied to predict fretting fatigue lifetime by 
combining experimental data with physics equations [43]. 
They have also been used to simulate crack initiation and 
propagation in quasi-brittle plates by minimizing peridy-
namic potential energy [42]. For fatigue life prediction, 
PINNs have demonstrated accuracy with small datasets 
by incorporating physical models into the network archi-
tecture [44]. This ability was proven to be applicable to 
model and predict crack lengths in elements of critical 

infrastructure, for example, in gas turbine components, 
specifically in first-stage injectors [45]. Presented model 
based on recurrent neural network (Fig. 12) uses real data 
from turbines (such as temperatures and pressures) and is 
based on the Paris’ law crack growth equation, which re-
lates stress in a material to how quickly a crack lengthens. 
Also, in corrosion-fatigue prognosis, a hybrid approach 
combining physics-informed and data-driven layers has 
been developed to model crack growth and corrosion 
effects in aircraft wing panels [46]. These and following 
studies highlight the versatility of PINNs in addressing 
various aspects of material degradation and failure, of-
fering improved accuracy and physical consistency com-
pared to traditional methods. 

Goswami et al. [47] proposed in 2019 a new approach 
to solving fracture mechanics problems using PINNs fo-
cused on phase-field modeling of brittle fracture. While 

Fig. 11. The process of utilizing PINNs to extract three unknown parameters of the ODE, using three-dimensional multiphase many-
body dissipative particle dynamics simulation data. First, a neural network is trained using simulation data, where the input is time t 
and the output is spreading radii ( )r t . This neural network comprises four layers with three neurons, and is trained for 12 000 epochs. 
Subsequently, the predicted ( )r t  is used to satisfy Eq. (9) in the physics-informed part. The loss function for this process consists of two 
parts: data matching and residual. By optimizing the loss function, the values of 0( , )eqRη θ , 0( , )eqRβ θ  and 0( , )eqRτ θ  are determined for 
each set of R0 and θeq. After predicting the unknown parameters using PINNs, two additional neural networks, denoted as NNβ and NNτ, 
are trained using these parameters to generate values for the unknown parameters at points where data are not available. The outputs of 
these networks, together with the outputs of the PINNs, are then fed through a symbolic regression model to discover a mathematical 
expression for the discovered parameter. Reprinted from Ref. [35], © 2024 E. Kiyani et al. Available under the terms and conditions of 
the CC BY-NC-SA 4.0 license.

https://creativecommons.org/licenses/by-nc-sa/4.0/
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most of the PINN algorithms available in the literature 
minimize the residual of the governing PDE, the proposed 
approach takes a different path by minimizing the vari-
ational energy of the system. This reduces the order of 
derivatives required for calculations and increases the sta-
bility and speed of training the neural network. For numer-
ical integration of the variational energy, the Gauss–Leg-
endre quadrature method is used, which, in combination 
with non-uniform rational B-splines (NURBS), allows for 
an accurate description of the crack geometry and local 
refinement of the mesh along the fracture path. A trans-
fer learning technique is also implemented, in which the 
neural network is partially trained for each new load step: 
only the parameters of the last layer are updated, while the 
rest remain fixed, which dramatically reduces the compu-
tational costs of crack growth calculations.

Recently, Lian et al. [48] showed the so-called phase 
field fracture model, which describes the propagation of 
cracks not through explicit tracking of discontinuities, but 
using a continuous phase field, which simplifies numeri-
cal calculations of complex crack geometry. The authors 
proposed to improve the accuracy of the model by imple-
menting length-scale decoupling degradation functions, 
which made it possible to reduce the density of the reso-
lution grid of diffuse fracture zones and increase the effi-
ciency of modeling. 

Yucesan et al. [49] presented a model combining phys-
ics and machine learning to predict the fatigue wear of 
onshore wind turbine bearings using PINNs. Traditional 
standard-based approaches do not take into account com-
plex factors such as lubricant degradation, which limits 

their accuracy. The authors propose a recurrent neural net-
work architecture, where physical equations model the ac-
cumulation of fatigue damage (Palmgren-Miner method) 
and lubricant condition data are processed by a multilayer 
perceptron. The physical part of the model includes the 
calculation of bearing life taking into account dynamic 
loads, temperature, and lubricant contamination. Lubri-
cant data affecting viscosity and contamination are mod-
eled by data obtained by simulating real contamination in 
the laboratory.

Shukla et al. [50] presented a method for using PINN 
for non-destructive assessment of surface cracks in metal 
plates using ultrasonic surface acoustic waves. Cracks are 
identified by analyzing the local change in the speed of 
sound caused by scattering and attenuation of waves in 
the defect area. The results demonstrate that the presence 
of a crack leads to a decrease in the effective velocity in 
the zone affected by the crack. This decrease in velocity is 
due to the backscattering of waves from the crack, which 
ultimately leads to a loss of wave energy. The PINN model 
integrates the acoustic wave equation into the loss func-
tion, which allows combining physical hypotheses with 
experimental data.

Finally, Wang et al. [43] used data from 27 laborato-
ry tests on aluminum alloy, in which they created models 
of the contact of parts, taking into account friction and 
loads. PINN predicted wear more accurately than a con-
ventional neural network. An important role was played 
by the choice of parameters that determine “how much 
physics” was taken into account in the neural network. In 
the proposed approach, the stress distribution is calculated 

Fig. 12. The custom cell of the physics-informed recurrent neural network. This figure is a sketch of Fig. 7 from Ref. [45]; all major 
designations are saved.
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by FEM using the critical plane method, forming a data-
base for training an artificial neural network (ANN). Then, 
physics laws are integrated into the data-assisted PINN 
architecture, including the Findley parameter relationship 
with cyclic loads, which allows the model to combine ex-
perimental data with fundamental equations of mechanics, 
increasing the accuracy of predictions (Fig. 13).

3. OUTLOOK AND CONCLUSIONS

There are three aspects in the problem of data availabili-
ty and validity in realistic tribological systems containing 
materials with surface roughness that have not yet been 
sufficiently explored in the domain of PINNs research: 
surface roughness data, local tribometric data and contact 
mechanics simulation data.

3.1. Surface roughness

In the numerous multiphysics phenomena shown in the 
Fig. 1, surface roughness plays one of the most important 
roles for tribological properties of contact system.

Computational tribology models commonly rely on 
the surface roughness data described as surface rough-
ness power spectrum. Power spectrum density (PSD) is a 
common way to describe surface roughness as reviewed in 
Refs. [51] and [52]. However, PSD does not contain full 
information on surface topography, namely phase compo-
nents of the spectrum are lost. Thus, different surfaces can 
have same PSD.

There is a debate on the experimental methods most 
applicable for obtaining surface topography data. In 
Ref. [53], it is demonstrated that surface height data ob-
tained using optical methods can be often inaccurate and 
should be avoided in calculating surface roughness power 
spectra, while engineering stylus instruments and atomic 
force microscopy should be generally preferred. For sur-
faces with isotropic roughness, the tribologically relevant 
information about the roughness is contained in a line scan 
and can be converted to 2D power spectrum.

Silicone elastomer can be used to obtain replica of sur-
faces and measuring PSD which are difficult to evaluate 
directly, including surfaces with very high roughness [54].

Surface roughness can be created in numerical simula-
tions by randomization algorithms [55–58].

3.2. Analytical (local) tribometry

Many traditional experimental tribology techniques 
commonly are measurements of “global” quantities. 
They represent integral quantities in the tribological in-
terface, such as friction force represents the integral of 
interfacial shear stress over contact area. However, tak-
ing into account various local quantities is crucial for 
accurate tribological modeling. Those local quantities 
can include real area of contact, local deformation, tem-
perature distribution.

Analytical tribometry can be defined as a set of exper-
imental instruments that allow collect local data beyond 
the traditional friction force / applied force / displace-
ment / velocity variables. In recent years, measurement 
of local quantities has become more accessible due to 
new available instruments and techniques. One of the 
most important types of local data in analytical tribome-
try includes optical observation of the contact patches for 
contact loaded both in normal and shear modes. This can, 
e.g., include optical imaging further processed with digital 
image correlation method [59].

Experimental optical observation of contact area with 
surface roughness for elastomers/glass had been demon-
strated in the works [60,61]. Optical contact observation 
for rough surfaces using rigidochromic molecules was re-
cently also demonstrated in Ref. [62].

Another examples of analytical tribometry include 
infrared thermography method that can be used to detect 
frictional heating [63], spectrometer-equipped instrument 
for studying tribochemical processes [64].

Imagining techniques allow obtaining data that would 
be difficult to get by other means, but they have limita-
tions, because the contact materials must be transparent. 
Alternative approach to collecting local data, taken by ac-
ademic tribologists, is considering micro- and nanoscale 
single asperity systems. Single asperity tribological sys-

Fig. 13. Prediction results from ANN models versus exper-
imental results. Adam is adaptive moment estimation, SGD is 
stochastic gradient descent algorithm, RMSProp is root mean 
square propagation. Among the three ANN models, the one using 
the Adam algorithm produced the best results, with data points 
closely aligning with the black line. Reprinted from Ref. [43], 
© 2024 C. Wang et al. Available under the terms of the CC BY 
4.0 license.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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tems can be useful to abstract the effects of surface rough-
ness and long-range mechanical coupling.

3.3. Contact mechanics numerical simulations with 
rough surfaces

State of the real surfaces in contact is difficult to define 
due to the surface roughness and contaminations that are 
heavily affecting contact phenomena. Once theoretical-
ly defined such a surface contains incredible number of 
degrees of freedom. There are numerous computational 
methods allowing treatment of tribological systems with 
many degrees of freedom [4], some of them are special-
ized for tribological problems.

The “classical” approaches to contact mechanics ne-
glect non-local elastic deformation in the body with sur-
face roughness [65,66]. On the other hand, FEM allows to 
solve the continuum elasticity problem accurately, but can 
require large computational resources for systems with 
surface roughness. Boundary element methods [56] and 
Green’s function molecular dynamics (GFMD) reduce 
computational requirements by modeling only contacting 
surfaces, thus, present in this regard a computationally 
efficient alternative. In particular, GFMD [67–69] en-
ables efficient scaling through parallelization as reviewed 
in Ref. [70]. It must be noted that GFMD can be both ap-
plied on the level of discrete atoms as well as in the con-
tinuum mechanics limit [71,72].

The tribological applications are fundamentally de-
pendent on a variety of multiphysics phenomena (Fig. 1) 
that need to be taken into account in creating PINNs. Im-
proving accuracy of PINNs predictions would require in-
put that includes materials data, topography and surface 
roughness, and miscellaneous data of analytical tribom-
etry. Creating an integrated PINN (“multi-PINN”) that is 
capable of synthesizing the individual tribology-related 
phenomena presents a practically important and challeng-
ing problem (Fig. 14) that is yet at the dawn of academic 
research.
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Развитие и перспективы физически информированных 
нейронных сетей для трибологических применений  

с мультифизической интеграцией

А.Ю. Кохановский 1, Л.М. Дорогин 2,3, К.А. Егорова 4, Е.В. Антонов 2, Д.А. Синев 4

1 Физический факультет, Университет ИТМО, Кронверкский пр., 49, лит. A, Санкт-Петербург, 197101, Россия
2 Институт перспективных систем передачи данных, Университет ИТМО, Кронверкский пр., 49, лит. A, Санкт-Петербург, 

197101, Россия
3 Department of Molecules and Materials, University of Twente, Enschede, Netherlands

4 Институт лазерных технологий, Университет ИТМО, Кронверкский пр., 49, лит. A, Санкт-Петербург, 197101, Россия

Аннотация. Представлен краткий обзор последних достижений в области нейронных сетей, основанных на физике (PINN), 
для приложений, связанных с трибологией. Трибологические приложения рассматриваются как фундаментально зависящие 
от множества мультифизических явлений, которые необходимо учитывать при создании PINN. Мультифизические входные 
данные для PINNs могут включать данные о материалах, топографии и шероховатости поверхности, а также данные 
аналитической трибометрии, которые используются для анализа трения, смазки, износа, смачивания, теплопередачи, 
структурных и фазовых переходов, химических реакций, растрескивания и фреттинга. Создание мульти-PINN, которые 
соединяют отдельные трибологические явления, представляет собой практически важную и сложную проблему, которую еще 
предстоит решить.

Ключевые слова: трибология; трение; нейронные сети; мультифизика; машинное обучение
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